|
Iris recognition is an automated method of biometric identification that uses mathematical pattern-recognition techniques on video images of one or both of the irises of an individual's eyes, whose complex random patterns are unique, stable, and can be seen from some distance. Retinal scanning is a different, ocular-based biometric technology that uses the unique patterns on a person's retina blood vessels and is often confused with iris recognition. Iris recognition uses video camera technology with subtle near infrared illumination to acquire images of the detail-rich, intricate structures of the iris which are visible externally. Digital templates encoded from these patterns by mathematical and statistical algorithms allow the identification of an individual or someone pretending to be that individual. Databases of enrolled templates are searched by matcher engines at speeds measured in the millions of templates per second per (single-core) CPU, and with remarkably low false match rates. Several hundred millions of persons in several countries around the world have been enrolled in iris recognition systems for convenience purposes such as passport-free automated border-crossings, and some national ID programs. A key advantage of iris recognition, besides its speed of matching and its extreme resistance to false matches, is the stability of the iris as an internal and protected, yet externally visible organ of the eye. ==History== Although John Daugman developed and patented the first actual algorithms to perform iris recognition, published the first papers about it and gave the first live demonstrations, the concept behind this invention has a much longer history and today it benefits from many other active scientific contributors. In a 1953 clinical textbook, F.H. Adler〔Adler, F.H., Physiology of the Eye (Chapter VI, page 143), Mosby (1953)〕 wrote: "In fact, the markings of the iris are so distinctive that it has been proposed to use photographs as a means of identification, instead of fingerprints." Adler referred to comments by the British ophthalmologist J.H. Doggart,〔Doggart, J.H., Ocular Signs in Slit-Lamp Microscopy, Kimpton (1949), page 27〕 who in 1949 had written that: "Just as every human being has different fingerprints, so does the minute architecture of the iris exhibit variations in every subject examined. (features ) represent a series of variable factors whose conceivable permutations and combinations are almost infinite." Later in the 1980s, two American ophthalmologists, L. Flom and A. Safir managed to patent Adler's and Doggart's conjecture that the iris could serve as a human identifier, but they had no actual algorithm or implementation to perform it and so their patent remained conjecture. The roots of this conjecture stretch back even further: in 1892 the Frenchman A. Bertillon had documented nuances in "Tableau de l'iris humain". Divination of all sorts of things based on iris patterns goes back to ancient Egypt, to Chaldea in Babylonia, and to ancient Greece, as documented in stone inscriptions, painted ceramic artefacts, and the writings of Hippocrates. (Iris divination persists today, as "iridology.") The core theoretical idea in Daugman's algorithms is that the failure of a test of statistical independence can be a very strong basis for pattern recognition, if there is sufficiently high entropy (enough degrees-of-freedom of random variation) among samples from different classes. In 1994 he patented this basis for iris recognition and its underlying Computer Vision algorithms for image processing, feature extraction, and matching, and published them in a paper.〔Daugman, J., "High confidence visual recognition of persons by a test of statistical independence", IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (11), pp 1148-1161 (1993)〕 These algorithms became widely licensed through a series of companies: IriScan (a start-up founded by Flom, Safir, and Daugman), Iridian, Sarnoff, Sensar, LG-Iris, Panasonic, Oki, BI2, IrisGuard, Unisys, Sagem, Enschede, Securimetrics and L-1, now owned by French company Morpho. With various improvements over the years, these algorithms remain today the basis of all significant public deployments of iris recognition, and they are consistently top performers in NIST tests (implementations submitted by L-1, MorphoTrust and Morpho, for whom Daugman serves as Chief Scientist for Iris Recognition). But research on many aspects of this technology and on alternative methods has exploded, and today there is a rapidly growing academic literature on optics, photonics, sensors, biology, genetics, ergonomics, interfaces, decision theory, coding, compression, protocol, security, mathematical and hardware aspects of this technology. Most flagship deployments of these algorithms have been at airports, in lieu of passport presentation, and for security screening using watch-lists. In the early years of this century, major deployments began at Amsterdam's Schiphol Airport and at ten UK airport terminals allowing frequent travellers to present their iris instead of their passport, in a programme called IRIS: Iris Recognition Immigration System. Similar systems exist along the US / Canadian border, and many others. In the United Arab Emirates, all 32 air, land, and seaports deploy these algorithms to screen all persons entering the UAE requiring a visa. Because a large watch-list compiled among GCC States is exhaustively searched each time, the number of iris cross-comparison climbed to 62 trillion in 10 years. The Government of India is enrolling the iris codes (as well as fingerprints) of all 1.2 billion citizens within three years for national ID and fraud prevention in entitlements distribution. As of October 2015 the UIDAI (Unique IDentification Authority of India) had enrolled more than 900 million persons in this biometric programme. Iris is one of three biometric identification technologies internationally standardized by ICAO for use in future passports (the other two are fingerprint and face recognition). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Iris recognition」の詳細全文を読む スポンサード リンク
|